2.7 mm Locking Pediatric Hip Plates Specification, Uses, Sizes & Surgical Instruments.

2.7 mm Locking Pediatric Hip Plates

2.7 mm Locking Pediatric Hip Plates Specification

2.7 mm Locking Pediatric Hip Plates cover treatment options for stable fixation of varus and valgus as well as rotation osteotomies and fracture treatment of the proximal femur. 2.7 mm Locking Pediatric Hip Plates have a universal design for the left and right femur. Plate has three neck screws in the proximal part and combi-holes for locking or cortical screws in the distal part. Pediatric Hip Plates have the following main characteristics ensuring excellent fixation in the bone:

  • Plates available holes are 3 hole in 100°, 3 hole in 110°, 4 hole in 120°, 3, 5, 7 hole in 130° and 3 hole in 150°.
  • Plate has combi holes and round holes. Combi holes allow fixation with locking screws in the threaded section and cortex screws in the dynamic compression unit section for compression.
  • The shaft holes accept 2.7 mm locking screws in the threaded portion or 2.7 mm cortical screws in the compression portion. Distal locking holes in plate head accept 2.7 mm locking screws.
  • 2.7 mm Locking Pediatric Hip Plates allow implant placement to address the individual fracture pattern.
  • Limited-contact surface reduces bone-to-plate contact and helps to preserve the periosteal blood supply.
  • Choice of different lengths of plate eliminates the need to cut plates.
  • Pre-contoured plate to match anatomical shape.
  • Available in both Titanium and Stainless steel.
  • locking plate increases construct stability, decreases risk of screw back-out and subsequent loss of reduction. It also reduces the need for precise anatomic plate contouring and minimizes the risk of stripped screw holes.
  • A complete Instruments Set is available for 2.7 mm Locking Pediatric Hip Plates. General Instruments are available for this plate such as Plate Bending Press, Plate Holding Forceps, Plate Bending Pliers, Bone Holding Forceps, Bone Elevators, Bone Cutter, Bone Nibbler, Depth Gauge, Sleeve, Screw Driver, Trocar Sleeve etc.
  • Angular stability – Reduces the risk of primary and secondary loss of correction. Due to the angular stability, a hip spica is no longer necessary in the majority of older cases.
  • Easy and safe surgical technique – Initial plate positioning with Kirschner wires rather than using a chisel allows easy adjustment without bony damage.
  • Medialization – For 3.5mm Locking Paediatric Hip Plate there is the possibility of additional medialization that means that just one off-set is required for each plate size.

2.7 mm Locking Pediatric Hip Plates Uses

2.7 mm Locking Pediatric Hip Plates are indicated for fixation of fractures (including pathologic and impending pathologic fractures) and osteotomies of the femur in infants, children, adolescents and small statured adults.

Specific indications for plates include:

  • Varus, valgus, rotational and/or shortening osteotomies.
  • Femoral neck and/or pertrochanteric fractures.
  • Proximal metaphyseal fractures.
  • Diaphyseal fractures.
  • Pathologic fractures.
  • Prophylactic use for impending pathologic fractures.

Instruments for 2.7 mm Locking Pediatric Hip Plates

Hand and Foot Instruments Set

A complete instruments set are also available for 2.7 mm Locking Pediatric Hip Plates. Instruments can be modified according to the customer’s requirement with minimum quantity required. All these instruments can be used several times.

We are keeping wide range of  instruments items in this set to ensures that Doctors get almost all required items during. Below is list of items of this set.

  • 2.4 mm Threaded Drill Guide for 1.8 mm Drill Bit
  • 2.7 mm Threaded Drill Guide for 2 mm Drill Bit
  • Counter Sink Copuling Shaft
  • Depth Gauge for 2 / 2.4 mm Screws
  • Depth Gauge for 2.7 mm Screws
  • Double Drill Sleeve (Universal Drill Sleeve) 1.8/2.4 mm
  • Double Drill Sleeve (Universal Drill Sleeve) 2.0/2.7 mm
  • Drill Bit 1.8 x 100 mm, Quick Coupling
  • Drill Bit 2 x 100 mm, Quick Coupling
  • Drill Bit 2.4 x 100 mm, Quick Coupling
  • Drill Bit 2.7 x 100 mm, Quick Coupling
  • Hohmann Recator 6 mm
  • Kirschner Wire 1.8 x 150 mm
  • Plate Bender
  • Periosteal Elevator Fiber Handle
  • Plate and Bone Holding Forceps Ratchet Lock-Type1
  • Plate and Bone Holding Forceps Ratchet Lock-Type2
  • Reduction Forcep Pointed Tip Ratchet Lock
  • Reduction Forcep Serrated Tip Ratchet Lock
  • Screw Driver Hexagonal, Holding Sleeve, for 2.7 mm Locking Screws
  • Screw Driver Torque for 2.4/2.7 mm Locking Screws
  • Screw Driver Quick Coupling for 2.7 mm Locking Screws
  • Sharp Hook
  • T Handle Quick Coupling
  • Tap for 2.4 mm Screws, Quick Coupling
  • Tap for 2.7 mm Screws, Quick Coupling
  • Graphics Aluminum Box with Silicone Fittings

Do you have any questions for 2.7 mm Locking Pediatric Hip Plates?
Please fill this form we will get in touch with you shortly.

This field is for validation purposes and should be left unchanged.

Advantages of using locking plate for 2.7 mm Locking Pediatric Hip Plates

  • 2.7 mm Locking Pediatric Hip Plates are locking plate so it does not have to precisely contact the underlying bone in all areas. When screws are tightened, they “lock” to the threaded screw holes of the plate, stabilizing the segments without pulling the bone to the plate. Locking screws make it impossible for screw insertion to alter the reduction. Nonlocking plate/screw systems require a precise adaptation of the plate to the underlying bone. Without this close contact, tightening of the screws will pull the bone segments toward the plate, resulting in loss of reduction and possibly the occlusal relationship
  • Locking plate/screw systems do not disrupt the underlying cortical bone perfusion as much as conventional plates, which compress the plate to the cortical bone.
  • Screws are unlikely to loosen from the plate. Similarly, if a bone graft is screwed to the plate, a locking head screw will not loosen during the phase of graft incorporation and healing. The possible advantage to this property of a locking plate/screw system is decreased risk of inflammatory complications due to hardware loosening.
  • Locking plate/screw systems have been shown to provide more stable fixation than conventional nonlocking plate/screw systems.

Locking Screw Technology

The heads of the locking screws contain male threads while the holes in the plates contain female threads. This allows the screw head to be threaded into the 2.7 mm Locking Pediatric Hip Plates hole, locking the screw into the plate. This technical innovation provides the ability to create a fixedangle construct while using familiar plating techniques.

Locking Plate Technology

By using locking screws in a bone plate, a fixed-angle construct is created. In osteopenic bone or fractures with multiple fragments, secure bone purchase with conventional screws may be compromised. Locking screws do not rely on bone/plate compression to resist patient load, but function similarly to multiple small angled blade plates. In osteopenic bone or comminuted fractures, the ability to lock screws into a fixed-angle construct is imperative.

By combining locking screw holes with compression screw slots in the shaft, the plate can be used as both a locking device and a fracture compression device. If compression is desired, it must be achieved first by inserting the standard screws in the compression screw slots before inserting any locking screws.

More Products from 2.7 mm Locking Bone Plates

2.7 mm Locking Pediatric Hip Plates Surgical Technique

Select implant

Select the plates according to the fracture pattern and anatomy of the bone.

Reduce fracture

Reduce the fracture under image intensification and, if necessary, fix with Kirschner wires or reduction forceps. The reduction method is fracture-specific.

Trim 2.7 mm Locking Pediatric Hip Plates

Trim the plate to the desired length using bending/cutting pliers. Remove the burrs.

Contour plate

If necessary, contour the plate to suit the anatomical conditions. Use bending pins for LCP Plates and thread the pins into the screw holes to contour the plate. The plate can also be bent using two flat nosed pliers.

If possible, bend the plate between the locking/LCP holes. Do not deform the threaded part of the holes or overbend the plate as this may adversely affect insertion of locking screws. Avoid repetitive bending of the plate. Reverse bending or use of the incorrect instrumentation for bending may weaken the plate and lead to premature plate failure (e.g. breakage). Do not bend the plate beyond what is required to match the anatomy.

Position plate

Position the plate over the reduced fracture and, if necessary fix provisionally with Kirschner wires or reduction forceps. When using the holding forceps with swivel foot to hold the plate, remove the drill sleeves from the surrounding holes so that the holding forceps sit flush on the plate.

Determine screw type

Depending on the individual case, cortex and/or locking screws may be inserted. Determine where locking screws and where cortex screws will be used.
The final screw placement and the use of locking and cortex screws are determined by the fracture pattern. If a locking screw is inserted first, ensure that the 2.7 mm Locking Pediatric Hip Plates is held securely to the bone to prevent the plate from spinning as the screw locks into the plate.

Screw Insertion Cortical Screws

Drill the screw hole using the drill bit and the corresponding drill guide / drill sleeve. Determine the screw length with the corresponding depth
gauge. Insert the self-tapping cortex screw using the corresponding screwdriver.

Screw Insertion Locking Screws

Drill screw hole through the LCP drill sleeve using the appropriately sized drill bit. Determine the screw length either with the corresponding depth gauge or with the LCP drill sleeve. When using the LCP drill sleeve check the length directly on the scale of the drill sleeve. Then remove the drill sleeve. Insert the self-tapping locking screw using the corresponding screwdriver shaft and the appropriate handle.

Implant Removal

To remove the plate, first unlock all screws then definitely remove them in a second step. If the screws are not unlocked before removal the plate may rotate while the last screw is being removed and cause soft tissue damage.

2.7 mm Locking Pediatric Hip Plates Contraindications

Contraindications may be qualified or total, and need to be taken into consideration when evaluating the prognosis in each case. Alternative management techniques may need to be considered under the following conditions:

  • Acute or chronic infections, either local or systemic.
  • Local or systemic accurate or chronic inflammation.
  • Serve muscular, nervous or vascular disease endangering the affected area.
  • Defective bone structures, which would impede adequate anchoring of the implant.
  • All associated diseases which could endanger the function and success of the implant.

Warnings and Precautionary for 2.7 mm Locking Pediatric Hip Plates

Before using 2.7 mm Locking Pediatric Hip Plates, the surgeon and ancillary staff should study the safety information in these instructions, as well as any product-specific information in the product description, surgical procedures and/or brochures.

Plates are made from medical grade materials and are designed, constructed and produced with utmost care. These quality assure best working results provided they are used in the proper manner. Therefore, the following instructions for use and safety recommendations must be observed.

Improper use of Plates can lead to damage to the tissue, premature wear, destruction of the instruments and injury to the operator, patients or other persons.

It is vital for the operating surgeon to take an active role in the medical management of their patients. The surgeon should thoroughly understand all aspects of the surgical procedure and instruments including their limitations. Care in appropriate selection and proper use of surgical instruments is the responsibility of the surgeon and the surgical team. Adequate surgical training should be completed before use of this plate.

Factors which could impair the success of the operation:

  • Allergies to implanted materials.
  • Localized bone tumours.
  • Osteoporosis or osteomalacia.
  • System disease and metabolic disturbances.
  • Alcohol and drug abuse.
  • Physical activities involving excessive shocks, whereby the implant is exposed to blows and/or excessive loading.
  • Patients who are mentally unable to understand and comply with the doctor’s instructions.
  • Poor general health.

Possible Adverse Effects

The following adverse effects are the most common resulting from implantation:

  • Loosening of the 2.7 mm Locking Pediatric Hip Plates, which may result from cyclic loading of the fixation site and/or tissue reaction of the implant.
  • Early and late infection.
  • Further bone fracture resulting from unusual stress or weakened bone substance.
  • Temporary or chronic neural damage resulting from pressure or hematomata.
  • Wound hematomas and delayed wound healing.
  • Vascular disease including venal thrombosis, pulmonary embolism and cardiac arrest.
  • Heterotopic ossification.
  • Pain and discomfort due to presence of the Implants.
  • Mechanical failure of the implant, including bending, loosening or breakage.
  • Migration of implant resulting in injury.

Preoperative Planning for 2.7 mm Locking Pediatric Hip Plates

The operating planning is carried out following a thorough clinical evaluation of the patient, Also, x-rays must be taken to allow a clear indication of the bony anatomy and associated deformities. At the time of the operation, the corresponding implantation instruments in addition to a complete set of 2.7 mm Locking Pediatric Hip Plates must be available.

The clinician should discuss with the patient the possible risks and complications associated with the use of Implants. It is important to determine pre-operatively whether the patient is allergic to any of the implant materials. Also, the patient needs to be informed that the performance of the device cannot be guaranteed as complications can affect the life expectancy of the device.

2.7 mm Locking Pediatric Hip Plates Precautions

  • Confirm functionality of instruments and check for wear during reprocessing. Replace worn or damaged instruments prior to use.
  • It is recommended to use the instruments identified for this screw.
  • Handle devices with care and dispose worn bone cutting instruments in a sharps container.
  • Always irrigate and apply suction for removal of debris potentially generated during implantation or removal.

2.7 mm Locking Pediatric Hip Plates Warnings

  • 2.7 mm Locking Pediatric Hip Plates can break during use (when subjected to excessive forces). While the surgeon must make the final decision on removal of the broken part based on associated risk in doing so, we recommend that whenever possible and practical for the individual patient, the broken part should be removed. Be aware that implants are not as strong as native bone. Implants subjected to substantial loads may fail.
  • Instruments, screws and cut plates may have sharp edges or moving joints that may pinch or tear user’s glove or skin.
  • Take care to remove all fragments that are not fixated during the surgery.
  • While the surgeon must make the final decision on implant removal, we recommend that whenever possible and practical for the individual patient, fixation devices should be removed once their service as an aid to healing is accomplished. Implant removal should be followed by adequate post-operative management to avoid refracture.

2.7 mm Locking Pediatric Hip Plates General Adverse Events

As with all major surgical procedures, risks, side effects and adverse events can occur. While many possible reactions may occur, some of the most common include: Problems resulting from anesthesia and patient positioning (e.g. nausea, vomiting, dental injuries, neurological impairments, etc.), thrombosis, embolism, infection, nerve and/or tooth root damage or injury of other critical structures including blood vessels, excessive bleeding, damage to soft tissues incl. swelling, abnormal scar formation, functional impairment of the musculoskeletal system, pain, discomfort or abnormal sensation due to the presence of the device, allergy or hypersensitivity reactions, side effects associated with hardware prominence, loosening, bending, or breakage of the device, mal-union, non-union or delayed union which may lead to breakage of the implant, reoperation.