Herbert Screws

2.5 mm Herbert Screws
3 mm Herbert Screws
3.5 mm Herbert Screws
4.5 mm Herbert Screws
5.5 mm Herbert Screws
6.5 mm Herbert Screws

Herbert Screws

Herbert Screws Specification

  • Herbert Screws have headless design, it means that the screw is completely embedded in the bone, without any protrusions to cause tissue irritation even in intra-articular placement.
  • Cannulation helps ensure precise placement of the screw.
  • Herbert Cannulated Guide Pins hold the fragment and act as guides for drilling, tapping, and screw placement.
  • The thread design of the Screw creates compression and provides fracture stability. As the proximal threads engage the bone, the fracture is drawn together, helping to create and maintain stability of the fracture site.
  • Screws available in both Titanium and Stainless Steel.

Herbert Screws Uses

Herbert Screws are designed for the management of fractures where minimal tissue coverage makes standard screw use inappropriate or where
extreme precision in fragment alignment is imperative. Such locations might include fractures of the:
Olecranon and malleolar region
Distal femur
Proximal tibia
Distal tibia

  • 2.5mm Herbert Screws are indicated for fixation of fractures and nonunions of small bones and small bone arthrodeses, including scaphoid fractures; intraarticular fractures of the tarsals, metatarsals, carpals and metacarpals; bunionectomies and osteotomies; arthrodeses of small joints (e.g. phalanges); fractures of the patella, ulna and radial styloid.
  • 3mm and 3.5mm Herbert Screws are intended for fixation of intra-articular and extra-articular fractures and nonunions of small bones and small bone fragments; arthrodeses of small joint; bunionectomies and osteotomies, including scaphoid and other carpal bones, metacarpals, tarsals, metatarsals, patella, ulnar styloid, capitellum, radial head and radial styliod.
  • 4mm and 4.5 Herbert Screws are indicated for fracture fixation, reconstruction, osteotomy, and arthrodesis of various bones and bone fragments including joint fusions (arthrodeses) in the foot and fixation of intra-articular fractures of the humerus, femur and tibia.

Herbert Screws Uses

Herbert Screws Sizes

2.5 mm Screws Length

8mm, 10mm, 12mm, 14mm, 16mm, 18mm, 20mm, 22mm, 24mm, 26mm, 28mm and 30mm.

2.5 mm Screws Length

8mm, 10mm, 12mm, 14mm, 16mm, 18mm, 20mm, 22mm, 24mm, 26mm, 28mm and 30mm.

3.5 mm Screws Length

8mm, 10mm, 12mm, 14mm, 16mm, 18mm, 20mm, 22mm, 24mm, 26mm, 28mm, 30mm, 32mm, 34mm, 36mm, 38mm, 40mm, 42mm, 44mm, 46mm, 48mm, 50mm, 55mm, 60mm, 65mm, 70mm, 75mm and 80mm.

4.5 mm Screws Length

8mm, 10mm, 12mm, 14mm, 16mm, 18mm, 20mm, 22mm, 24mm, 26mm, 28mm, 30mm, 32mm, 34mm, 36mm, 38mm, 40mm, 42mm, 44mm, 46mm, 48mm, 50mm, 55mm, 60mm, 65mm, 70mm, 75mm and 80mm.

5.5 mm Screws Length

12mm, 14mm, 16mm, 18mm, 20mm, 22mm, 24mm, 26mm, 28mm, 30mm, 32mm, 34mm, 36mm, 38mm, 40mm, 42mm, 44mm, 46mm, 48mm, 50mm, 55mm, 60mm, 65mm, 70mm, 75mm, 80mm, 85mm, 90mm, 95mm, 100mm, 105mm, 110mm, 115mm and 120mm.

6.5 mm Screws Length

12mm, 14mm, 16mm, 18mm, 20mm, 22mm, 24mm, 26mm, 28mm, 30mm, 32mm, 34mm, 36mm, 38mm, 40mm, 42mm, 44mm, 46mm, 48mm, 50mm, 55mm, 60mm, 65mm, 70mm, 75mm, 80mm, 85mm, 90mm, 95mm, 100mm, 105mm, 110mm, 115mm and 120mm.

Herbert Screws Surgical Technique

STEP 1: Guide Pin
After initial reduction of the fracture fragments is obtained, the specifically designed Herbert Cannulated Guide Pin is placed through the fragments to act as a Guide Wire for the rest of the placement operation. The Guide Pin should not perforate the opposite cortex.

STEP 2: Depth Gauge
Use the Depth Gauge to measure the length of the Guide Pin in the bone. If the Guide perforates the opposite cortex, corresponding compensation
must be made when selecting the implant length.

STEP 3: Proximal Drill Bit
Insert the Proximal Drill Bit over the Guide Pin to drill the cortex. The Drill Bit should be advanced until the built-in stop contacts the cortex of the bone.

STEP 4: Distal Drill Bit
Insert the Distal Drill Bit over the Guide Pin and drill to the desired depth. At this time the surgeon may choose to drill 5mm less than the
pilot length.

STEP 5: Cannulated Tap
Insert the Cannulated Tap over the Guide Pin and tap the channel to prepare for the leading screw threads of the implant. Tap depth should be equal to the depth created by the Distal Drill Bit.

STEP 6: Insert Screw
In determining screw length, the surgeon may wish to choose an implant 5mm to 10mm shorter than the measured pilot length. Using the Cannulated Screwdriver, insert the Herbert Cannulated Screw. As the trailing threads engage the bone, reduction is achieved. These trailing threads should be seated approximately 1mm below the cortex of the bone to ensure that there is no intra-articular protrusion or interference with the joint
function.

Do you have any questions for Herbert Screws?
Please fill this form we will get in touch with you shortly.

Name(Required)
This field is for validation purposes and should be left unchanged.

Bone screws are the most commonly used orthopedic implants. There are many different types and sizes of screws for different types of bones. Most bone screws are made out of stainless steel or titanium alloys. The outer diameter, root diameter, and thread pitch and angle are important in determining screw mechanics.

In orthopedics, screws are typically described by their outer diameter, for example, a “2.5 mm Herbert Screws” has an outside diameter of 2.5 mm. The pitch of a screw is the linear distance travelled by a screw for one full turn of the screw. The screw advances by a distance equal to the distance between the threads with each full turn. Cortical screws have a lower pitch and therefore more number of threads. Cancellous bone screws have a greater depth of the screw to increase the surface area and therefore improve the purchase, as the bone is weaker.

Screws function by converting the tightening torque into internal tension in the screw and elastic reactions in the surrounding bone. This creates compression between the fracture fragments that the screw is holding together. 2mm Cortical Screw is typically inserted into holes drilled equal to the root diameter and are either self-tapping or are inserted tapped (threaded) holes. The torque to insert cortical bone screws can be high, so the screws must be properly inserted into the correct size drilled hole and designed to withstand insertion torque levels expected in cortical bone. Cancellous bone screws have large, deep threads that grip the spongy bone well. Because of the relatively low strength of the cancellous bone, failure of the screw itself during insertion is rare, but pull out can be an issue.